
Implementation of the Naive Bayes Classifier as a Tweet
Sentiment Classifier

An Empirical Study of the Naive Bayes Classifier

Henry Sue
UC Riverside

hsue002@ucr.edu

ABSTRACT
Text classification is the process in which text documents are sorted
or "classified" into preset groups automatically with the use of ma-
chine learning algorithms. The Naïve Bayes Classifier is a popular
text classification algorithm due to its simplicity and performance.
It is typically used to establish baseline performance for state-of-the-
art models to compare with. Machine learning packages for popular
programming languages such as SciKit-Learn for Python or Text-
Analysis.jl for Julia, have a pre-built implementation of the naïve
bayes algorithm. This paper rebuilds and re-implements the naïve
bayes classifier from scratch and benchmarks the implementation
against the prebuilt Naive Bayes function in SciKit-Learn.

KEYWORDS
Text Classification, Naïve Bayes Classifier

1 INTRODUCTION
Text classification has been a topic in the machine learning space for
many years. Text classification is the automated process of labeling
documents with pre-determined class labels. A simple solution that
has provided baseline performance is the Naïve Bayes Classifier,
which is based on Bayes Theorem. The "Naïve " portion of the Naïve
Bayes algorithm comes from the assumption that all features are
independent of each other with respect to the class label. When
dealing with text-classification problems, there are two types of
Naïve Bayes models that are typically used: the "multinomial" Naïve
Bayes, and "Bernoulli" Naïve Bayes. The two types assume different
distributions for document features or "event models" [7]. The Naïve
Bayes classifier then predicts the likelihood that a document fits into
each class. Sentiment analysis is a subproblem of text classification
that aims to predict whether the underlying meaning of a document
carries a positive or negative connotation or meaning. Sentiment
classification has the challenge of parsing latent meaning from
text, and often struggles with edge cases that can be identified by
contextual clues. An example of this phenomenon is sarcasm, where
a sentence may comprise positive words but is used in a negative
indication.

In the context of text classification, the Naïve Bayes Classifier
relies on the bag-of-words model, a sparse representation of word
frequency for each document. The classifier then takes each word
count as independent features that serve as input for the model.
Despite the simplicity of the Naïve Bayes classifier, the classifier
performs quite well, and is very efficient, requiring no preset pa-
rameters. Further, the Naïve Bayes Classifier still performs quite
well even in situations where the independence assumption should
not apply. Natural Language is an example of this, as many words

are related and conditionally dependent. For example, the term
’Christmas’ is almost always accompanied by the words ’Holidays’
or ’Merry’. The advantage of Naïve Bayes model is that the model
aims to predict the classification by comparing probabilities that
a document is of a certain class, rather than attempting to esti-
mate the exact class probability. This leads to a robust model, as
documents are usually skewed toward one classification.

2 RELATEDWORK
The Naive Bayes Classifier is a classification model that is popularly
used as a baseline to compare new or state of the art models with.
As such, there is much documentation on similar methods. A main
source of information for this paper is Speech and Language Pro-
cessing (Jurafsky & Martin 2019) [5]. This textbook covers many
topics about natural language processing, including a chapter on
Naive Bayes and Sentiment Classification. Within this chapter, al-
though there is a focus on the Naive Bayes classifier, the chapter
also goes into detail about several tasks for text processing, in-
cluding sentiment classification, spam detection, and authorship
attribution. This chapter also includes psuedocode for the Naive
Bayes Algorithm, which my implementation is based upon.

Additionally, a well-cited article "Semantic text classification:
A survey of past and recent advances" (Altinel & Ganiz 2018) [1]
summarizes advances in text classification models. This article
weighs the differences between semantic text classification and
traditional text classification. A main topic that they focus on is
the reliance of traditional models on the Bag of Words (BoW) or
Vector Space Model (VSM). This is relevant to our paper as the
Naïve Bayes Classifier also relies on the sparse matrices of term
frequencies. Later, our paper will discuss the drawbacks of the
Bag of Words model, and how state of the art models use different
techniques to save memory space.

In his 2018 article "Bayesian Naïve Bayes classifiers to text clas-
sification" [9], Xu asserts that Naïve Bayes classifiers are not fully
Bayesian. He investigates the use of a Bayesian conversion of the
Naïve Bayes model to mitigate the influence of the independence
assumption. In addition to investigating the novel Fully Bayesian
Naïve Bayes, Xu also documents the traditional methods for all
flavors of the Naïve Bayes, including the Multinomial, Bernoulli
and Gaussian event models. This paper’s contents are out of the
scope of traditional Naive Bayes classifiers.

In order to push state of the art performance, recent advances
in Natural Language Processing involve training large neural net-
works using novel language representation models such as BERT
(Devlin et al. 2018) [2]. However, as presented by Friedman, Geiger,
and Goldsmith (1997) [3], the Naive Bayes Classifier’s performance

1

Henry Sue

is very close to state of the art, and with several revisions to the
assumption structure can achieve performance to state of the art
with a much simpler model (Bayesian Network Classifier).

3 PROPOSED METHOD

3.1 The Naïve Bayes Classifier
The proposed model that this paper follows is analogous to the
model described in "Speech and Language Processing" by Martin
and Jurafsky [5]. The Naïve Bayes Classifier relies on the "Naïve "
assumption that all features (or, in other words: the number of times
a word appears in a document) are independent events. In practice,
this generalization is usually false; many words in natural language
are highly dependent on other words, as there are special types of
words that function by modifying another in context. Despite this,
the Naive Bayes classifier is remarkably robust.

The bag-of-words model is a representation of a text document
by the frequency of occurrences of each word. For example, a bag-
of-words representation of the sentence "dog dog cat dog bird" can
be represented by the bag-of-words matrix:����𝑑𝑜𝑔 𝑐𝑎𝑡 𝑏𝑖𝑟𝑑

3 1 1

����
Thus, each text passage or "document" can be summarized by a

vector of each word frequency. Given: Document 1 = "dog dog cat
dog bird", and Document 2 = "cat dog bird cat bird". Therefore, we
can represent each document by the following vectors:

𝑉𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 =
[
𝑑𝑜𝑔, 𝑐𝑎𝑡, 𝑏𝑖𝑟𝑑

]
𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡1 =

[
3, 1, 1

]
𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡2 =

[
1, 2, 2

]
This is known as "count vectorization". In order to speed up

lookup and processing, each unique word can be instead repre-
sented by an identifier. This process is called tokenization. In our
implementation, each document in the dataset is first tokenized by
its vector index, then represented as the count vector.

The pseudocode for the process is:
1: for 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 ← 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 do
2: for all𝑤𝑜𝑟𝑑 ∈ 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 do
3: if 𝑤𝑜𝑟𝑑 ∉ 𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 then
4: 𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦+ = 𝑤𝑜𝑟𝑑

5: 𝑣𝑒𝑐𝑡𝑜𝑟 [𝑤𝑜𝑟𝑑] = 𝑐𝑜𝑢𝑛𝑡 (𝑤𝑜𝑟𝑑)
6: else
7: 𝑣𝑒𝑐𝑡𝑜𝑟 [𝑤𝑜𝑟𝑑] = 𝑐𝑜𝑢𝑛𝑡 (𝑤𝑜𝑟𝑑)
8: 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑣𝑒𝑐𝑡𝑜𝑟)
Where vocabulary is the set of all words that have occurred at

least once, and vector is the vector representing the document.

The Naïve Bayes Classifier is based on Bayes Theorem, where
the probability of an event A occurring given that B has occurred
can be broken down into 3 different probabilities:

𝑃 (𝐴|𝐵) = 𝑃 (𝐵 |𝐴)𝑃 (𝐴)
𝑃 (𝐵) (1)

Thus, we can apply this to document classification, where the
probability the the document is class c given document d is:

𝑃 (𝑐 |𝑑) = 𝑃 (𝑑 |𝑐)𝑃 (𝑐)
𝑃 (𝑑) (2)

Or, in other words, the probability that we observe class c given
the document d can be represented as the prior probability of class c
multiplied by the likelihood of document given c, divided by the prior
probability of document d. We can then represent our document as
the combined probability of its constituent n features:

𝑃 (𝑑 |𝑐) = 𝑃 (𝑓1, 𝑓2, ..., 𝑓𝑛 |𝑐) (3)
The classification step that the Naïve Bayes classifier takes is by

then comparing the posterior probabilities of each class given the
document, and outputs the higher one (the argmax of P(c|d).)

There are a few simplifications that we are able to do: First, we
are able to neglect the prior probability P(d), as this stays constant
for all classes, as document d does not change. Because we are
comparing the probabilities of each class with respect to the same
document d, we are only required to compare the numerator of
Bayes’ Theorem. Additionally, with the Naïve assumption that each
feature is independent, we can decompose the likelihood into the
multiplication of the probabilities of each feature:

𝑃 (𝑓1, 𝑓2, ..., 𝑓𝑛 |𝑐) = 𝑃 (𝑓1 |𝑐) · 𝑃 (𝑓2 |𝑐) · ...𝑃 (𝑓𝑛 |𝑐) (4)
Finally, we can write the predicted class equation as a function of

the prior probability 𝑃 (𝑐), and the decomposition of the likelihood
of the document 𝑃 (𝑑 |𝑐):

𝐶𝑝𝑟𝑒𝑑 = argmax 𝑃 (𝑐) ·
∏
𝑓

𝑃 (𝑓𝑛 |𝑐)

Another typical optimization is taking the log prior and log
likelihood instead of the prior or likelihood by itself. As the feature
and document space gets larger, the multiplication of the prior and
feature-wise likelihood can result in miniscule fractions that the
computer cannot represent. Therefore, the use of log space allows
for the processing of larger datasets with less risk of underflow and
with more efficiency. Using log space approximation is also safe
for this calculation as we are comparing the estimated probabilities
of each class against each other, rather than trying to predict each
probability exactly.

3.2 Training the Naïve Bayes Classifier
In order to train our Naïve Bayes Classifier, again, following the
algorithm described in Speech and Language Processing (Juraf-
sky & Martin 2019) [5]. In order to make our maximum likelihood
prediction, we must find the prior probability 𝑃 (𝑐) and the likeli-
hood 𝑃 (𝑓𝑛 |𝑐). In context of our dataset of text documents, we can
estimate the prior probability

𝑃 (𝑐) ≈ Number of documents of class ’c’
Total number of documents in Dataset

(5)

We then need to estimate the likelihood 𝑃 (𝑓𝑛 |𝑐). We are able do
that by letting each feature be the presence of each word, therefore

2

Implementation of the Naive Bayes Classifier as a Tweet Sentiment Classifier

the our likelihood of each word occurring given class c can be
estimated as:

𝑃 (𝑤𝑛 |𝑐) ≈
Number of times w appears in class ’c’
Sum of all counts of words in class ’c’

(6)

In practice, however, we run into an issue if a word does not
appear in the class corpus in the training data! If we run into a
word that is absent from the training vocabulary of a class, then the
resulting probability 𝑃 (𝑤𝑛 |𝑐) will always equal 0, which will cause
the resulting prediction of that class to always fail. We therefore
introduce Laplace smoothing, which is the concept of adding ’1’
to the potential count of each word in order to guarantee the exis-
tence of a count, regardless of if the word is absent in the training
documents of class c.

𝑃 (𝑤𝑛 |𝑐) =
𝑐𝑜𝑢𝑛𝑡 (𝑤𝑛, 𝑐) + 1∑

𝑤∈𝑉 (𝑐𝑜𝑢𝑛𝑡 (𝑤, 𝑐) + 1) =
𝑐𝑜𝑢𝑛𝑡 (𝑤𝑛, 𝑐) + 1

(∑𝑤∈𝑉 𝑐𝑜𝑢𝑛𝑡 (𝑤, 𝑐)) + |𝑉 |
(7)

In addition to Laplace Smoothing, if we encounter a word that
does not exist in any document in any class, we ignore the effect
of that word as we cannot compute a likelihood estimate of that
word. In essence, this allows us to process the document without
unknown words.

The pseudocode for the training algorithm is then:
1: Function Train NB(D,C) returns log(𝑃 (𝐶)) and log(𝑃 (𝑤 |𝑐))
2: for 𝑐𝑙𝑎𝑠𝑠𝑐 ∈ 𝐶 do
3: 𝑁𝑑𝑜𝑐 = number of documents in D
4: 𝑁𝑐 = number of documents from D in class c
5: logprior = log 𝑁𝑐

𝑁𝑑𝑜𝑐

6: 𝑉 ← vocabulary of D
7: for all𝑤𝑜𝑟𝑑 ∈ 𝑉 do
8: count(w,c)← total occurrences of w in docs in class c
9: loglikelihood(w,c)← 𝑐𝑜𝑢𝑛𝑡 (𝑤,𝑐)+1∑

𝑤∈𝑉 (𝑐𝑜𝑢𝑛𝑡 (𝑤,𝑐)+1)
10: return(logprior, loglikelihood, V)

And the pseudocode for the test algorithm is:
1: FunctionTest NB(testdoc,logprior,loglikelihood, C, V) returns

best ’c’
2: for all 𝑐𝑙𝑎𝑠𝑠𝑐 ∈ 𝐶 do
3: 𝑠𝑢𝑚[𝑐] ← logprior[c]
4: for all word in testdoc do
5: if word ∈ V then
6: sum[c] += loglikelihood[word,c]
7: return(argmax𝑐 sum[c])

Psudeocode for both training and testing algorithm is adapted
from Martin & Jurafsky (2014) [5].

4 EXPERIMENTAL EVALUATION
In order to benchmark the performance of our implementation of
our Naïve Bayes Classifier, we apply the Naïve Bayes to Sentiment
Classification. We use a novel dataset called "Sentiment140", which
comprises short text documents scraped from Twitter that were
automatically labeled by the contents of happy or sad emoji (Go,
Bahayani, Huang 2009) [4]. The dataset has two comma-delimited
files, a training set of 16 million automatically labeled tweets and a

Figure 1: Model Accuracy over 10 runs with random seed

Model Performance
Classifier Mean Acc Std Dev
Dummy Classifier 49.47% +/- 1.87
sk-learn Multinomial Naive Bayes 78.03% +/- 1.87
sk-learn Bernoulli Naive Bayes 78.86% +/- 1.72
Self Implemented Naive Bayes 75.77% +/- 0.81

Figure 2: Mean Accuracy and Standard Deviation Over 10
Runs

holdout test set of 498 hand-labeled tweets. Due to memory limita-
tions of the numpy array datatype, which my implementation of the
Naïve Bayes Classifier relies on, we use a randomly generated strat-
ified subset of the training data, using 2% of the training dataset or
approximately 320,000 tweets. In order to split the data, we call the
train_test_split function from scikit learn with the stratify setting
to true.

Our model is trained and tested along with the out-of-the-box
implementations of the Naïve Bayes classifier on 10 different ran-
dom seeds to get an aggregate approximation of the performance
of my implementation. Figure 1 shows the distribution of model
accuracy over the 10 runs of the sentiment classification. On in-
spection, the out of the box classifiers were on average slightly
more accurate than my implementation. Figure 2 shows the mean
accuracy and standard deviation of all classifiers run over the 10
runs. The "Dummy" classifier is a classifier that will guess a predic-
tion based on the distribution of class labels in the training data.
As expected, the dummy classifier guesses correctly approximately
50% of the time.

The self implemented model is almost up to par with the out-
of-the-box models in sk-learn. We can see that the Bernoulli Naïve
Bayes performs slightly better than the Multinomial model, and
both are approximately 3% more accurate on average than my
implementation. This is because each event model, Bernoulli and
Multinomial (and consequently Gaussian) perform better in specific
classification problems. In sentiment classification, the Bernoulli
model performs marginally better, as it considers whether a word
appears rather than the Multinomial Naïve Bayes, which considers
the frequency of each word in a document.

Table 1 Constructs a Confusion Matrix (or also known as a con-
tingency table) that measures the predictions that the classifier

3

Henry Sue

True Positive True Negative
Predicted Positive 136 37
Predicted Negative 46 140

Table 1: Confusion Matrix for Implemented Naive Bayes
(with random seed 42)

Metric Result
Accuracy 76.88%
Precision 74.72%
Recall 74.73%
Specificity 79.10%
𝐹1 Score 76.62%

Table 2: Table of Metrics for Implemented Naive Bayes (with
random seed 42)

made versus the actual (human made) predictions. From this confu-
sion matrix, we are able to measure a few key metrics. Table 2 is a
table of metrics for the Naïve Bayes implementation. We can see
that overall, our Naïve Bayes is a well rounded classifier, having
approximately the same True Positive Rate (Precision), Specificity
and Recall. No matter which metric the classifier is measured, it is
approximately similarly high-performing. Often 𝐹1 score is used as
a performance metric for machine learning models as it normalizes
and generalizes the overall performance of the classifier with the
tradeoff of losing error detail.

5 DISCUSSIONS AND CONCLUSIONS
5.1 Results and Conclusion
Through our implementation of the Naïve Bayes Classifier, we
can empirically conclude that it is a simple, but robust machine
learning algorithm. Our implementation performed on par with the
implementations in the production scikit-learn library. We can say
that the Naïve Bayes Classifier is robust, as it significantly more
accurate than guessing based solely on the prior probability of
classes (Dummy Classifier), and because it generalizes well to many
different classification problems.

Throughout the 10 runs performed to establish a benchmark
between the Scikit-Learn implementation and our implementation,
we can conclude that our implementation is close, but inferior.
There are a few possibilities that may contribute to this: our imple-
mentation uses log prior and log likelihood, which are quick and
efficient.

5.2 Considerations and Future Work
One limiting factor in my implementation is the reliance on the
NumPy array data structure. In the Scikit-Learn implementation,
the CountVectorizer module uses SciPy SparseMatrices to represent
the vocabulary. Arrays will keep all information of every cell within
the array. With a bag of words model, the matrix will typically
grow exponentially in size, because each unique word will add
an additional 𝑛 cells, where 𝑛 is the number of documents in the
dataset. Additionally, Natural Languages (English in this case) have
a exceedingly large vocabulary, leading to an array representation

of the bag of words to be extremely sparse. Thus, a NumPy array
is not memory-efficient, and cannot represent a sparse matrix of
vocabulary for large datasets. A future improvement to our method
of implementation is to adopt the memory-efficient sparse matrix
representation that the Scikit-Learn implementation utilizes.

Another limiting factor in our implementation is the time com-
plexity. The functions written for our implementation use sub-
optimal indexing, data structures and functional programming
methods. The training and testing phases of our implementation
take much longer than the implementation in Scikit-Learn. In fact,
the difference grows from seconds in small datasets (100 - 1000
rows) to a few minutes in medium-large datasets (100,000+ rows).
With enormous data, we would expect this performance to be pro-
hibitive to deploying this model at scale. With refactoring of code
to reduce redundant processes, this difference in performance can
be reduced, but the largest contributor is the difference in data
structures, as a whole array is much slower to process than the
sparse representation in the Scikit-Learn Library.

There are also several improvements we can make to the general
Naïve Bayes Classifier. With a fully bayesian Naïve Bayes Classifier
[9], we may be able to generalize our model to problems without the
Naïve assumption of feature independence. This would allow the
classifier to more closely consider the relationship of language syn-
tax and context. Another improvement to the Naïve Bayes Classifier
is the addition of negation handling to convey negating contextual
clues.[5] Negation handling is the representation of the opposite
meaning of words, that can be assigned when a negative modifi-
cation word is present in a sentence. For example, in the sentence
"I am not happy", we would add the word "NOT_happy" to the
vocabulary instead of "happy". This may allow for more accurate
representations of difficult contextual situations such as sarcasm
or the presence of the word "not" or "but". The drawback to this
approach is the potential additional space necessary to store these
additional words in a matrix, and may lead to even greater sparsity
within the matrix.

REFERENCES
[1] Berna Altınel and Murat Can Ganiz. 2018. Semantic text classification: A survey

of past and recent advances. Information Processing Management 54, 6 (2018),
1129 – 1153. https://doi.org/10.1016/j.ipm.2018.08.001

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
CoRR abs/1810.04805 (2018). arXiv:1810.04805 http://arxiv.org/abs/1810.04805

[3] Nir Friedman, Dan Geiger, and Moises Goldszmidt. 1997. Bayesian Network
Classifiers. Machine Learning 29, 2/3 (1997), 131–163. https://doi.org/10.1023/a:
1007465528199

[4] Alec Go, Richa Bhayani, and Lei Huang. 2009. Twitter Sentiment Classification
using Distant Supervision. CS@Stanford (2009). http://help.sentiment140.com/

[5] Daniel Jurafsky and James H. Martin. 2019. Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics and Speech
Recognition (3 ed.). Prentice Hall.

[6] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2018. Intro-
duction to Information Retrieval. Cambridge University Press, Chapter 13: Text
Classification & Naive Bayes, 253–287.

[7] Andrew McCallum and Kamal Nigam. [n.d.]. A Comparison of Event Models for
Naive Bayes Text Classification. ([n. d.]). AAA-I 98 workshop on Learning for
Text Categorization.

[8] G. Singh, B. Kumar, L. Gaur, and A. Tyagi. 2019. Comparison between Multinomial
and Bernoulli Naïve Bayes for Text Classification. In 2019 International Conference
on Automation, Computational and Technology Management (ICACTM). 593–596.
https://doi.org/10.1109/ICACTM.2019.8776800

[9] Shuo Xu. 2018. Bayesian Naïve Bayes classifiers to text classification. Journal of
Information Science 44, 1 (2018), 48–59. https://doi.org/10.1177/0165551516677946

4

https://doi.org/10.1016/j.ipm.2018.08.001
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1023/a:1007465528199
https://doi.org/10.1023/a:1007465528199
http://help.sentiment140.com/
https://doi.org/10.1109/ICACTM.2019.8776800
https://doi.org/10.1177/0165551516677946

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 The Naïve Bayes Classifier
	3.2 Training the Naïve Bayes Classifier

	4 Experimental Evaluation
	5 Discussions and Conclusions
	5.1 Results and Conclusion
	5.2 Considerations and Future Work

	References

